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We systematically calculate localization length and conductance fluctuations in quantum wires with spin-
orbit interaction to demonstrate that the effective symmetry of the system is determined by the relative
magnitude between the spin-relaxation length and the localization length. When the localization length is much
smaller than the spin-relaxation length, the localization length is close to the value of wires without spin-orbit
interaction. When the localization length exceeds the spin-relaxation length, the localization length is enhanced
and approaches that of wires with strong spin-orbit interaction. The same symmetry crossover occurs in
conductance fluctuations.
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I. INTRODUCTION

Disordered systems are classified into three universality
classes by the presence or absence of time-reversal and spin-
rotational symmetry which are not destroyed by potential
randomness.1 The symmetry plays a significant role in deter-
mining localization effects and conductance fluctuations, di-
rectly observable in transport experiments.2 In the presence
of spin-orbit interaction, the spin-rotational symmetry is bro-
ken and the universality class changes from orthogonal to
symplectic.3 The purpose of this paper is to demonstrate the
role of spin-relaxation length in determining this symmetry
crossover in quantum wires with spin-orbit interaction.

In quantum wires, drastic enhancement of the localization
length and reduction in conductance fluctuations by strong
spin-orbit interaction have already been demonstrated both
analytically4,5 and numerically.6,7 The important question re-
mains, however, how and when the symmetry crossover oc-
curs as a function of the strength of the spin-orbit interaction,
the degree of disorder, the wire width, etc.

In a semiconductor two-dimensional �2D� system such as
a quantum well and a heterostructure, the so-called structure
inversion asymmetry causes spin splitting in the presence of
spin-orbit interaction.8–12 The term responsible for the spin
splitting behaves as an effective magnetic field and causes
spin precession, and generally leads to spin relaxation in
presence of spin-independent impurity scattering.13 In quasi-
one-dimensional systems such as quantum wires, the spin
relaxation is suppressed as has been suggested both
theoretically14–16 and experimentally,17,18 which makes a
quantum wire suitable for spintronics.19,20 In a previous pa-
per, a detailed numerical study was devoted to the spin-
relaxation length in quantum wires.21

In this paper, we perform systematic calculations of the
localization length and the conductance fluctuations in quan-
tum wires, to demonstrate that the effective symmetry of the
system is determined by the relative magnitude between the
spin-relaxation length and the localization length. In Sec. II,
the formulation of the problem is briefly given. In Sec. III,
the numerical results are presented. It is shown that the lo-
calization length is given by that of wires without spin-orbit

interaction when it is smaller than the spin-relaxation length,
and that it is enhanced and becomes that of wires with strong
spin-orbit interaction when it is larger than the spin-
relaxation length. The same symmetry crossover occurs also
in conductance fluctuations. A short summary is given in
Sec. IV.

II. FORMULATION

The system to be considered is exactly the same as that
used in a previous study21 and therefore we shall briefly sum-
marize the characteristic parameters. In semiconductor 2D
systems, the presence of the so-called structure inversion
asymmetry gives Hamiltonian

H =
�2k2

2m�
+ ��kx�y − ky�x� , �1�

where m� is effective mass, k= �kx ,ky� is wave vector, and ��

��=x ,y ,z� are the Pauli spin matrices. The strength of spin
splitting is characterized by � which is defined as the ratio of
the spin splitting at the Fermi level to the Fermi energy, i.e.,
�=�kF /EF. In typical quantum wells, we have ��0.05.

A quantum wire is constructed by confining electrons
within a narrow strip with width W. We choose the x and y
axis in the longitudinal and transverse direction of the wire,
respectively. The channel number per spin of the wire, i.e.,
the number of occupied subbands below the Fermi level, is
N= �2W /�F�, where �x� is an integer part of x and �F is the
Fermi wavelength of the 2D system with EF.

In actual calculations, a square-lattice tight-binding model
with lattice constant a is used to simulate quantum wires.22

The effect of disorder is included by on-site potential which
is uniformly distributed with width U. In continuum limit,
the disorder potential can be understood as high concentra-
tion of �-function potentials and U is characterized by mean-
free path � in a 2D system as described in the previous
paper.21

We consider a quantum wire with length L. At both ends
of the wire, a spin-independent ideal lead with same width is
attached. Using the recursive Green’s-function technique, we
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shall calculate the spin-dependent transmission coefficients
as a function of the wire length.23,24 Using these coefficients,
we calculate the spin correlation function Fyy�L�
	 ��y�L��y�0�� for spin in the y direction between x=0 and
x=L. The spin-relaxation length �S is given by the decay
rate of Fyy�L�	exp�−L /�S�. In the following we use �S ob-
tained previously.21

Conductance G�L� of the wire can be calculated using the
multichannel version25–29 of Landauer’s formula.30 In terms
of its geometric average, localization length 
 is defined as

exp�log G�L�� 	 e−L/
, �2�

for sufficiently large L, where �¯ � denotes sample average.
The conductance fluctuation is defined as

�G�L� � ��G�L� − �G�L���2�1/2. �3�

In this study, the sample average is performed over more
than 2000 different impurity configurations for the purpose
of suppressing statistical fluctuations. We shall choose
�F /a=7 and vary the strength of the spin-orbit interaction as
�=0 �perfect orthogonal�, 0.02, 0.03, 0.05, and 0.5. As will
be discussed below, a fully symplectic case is realized for
�=0.5. Systematic calculations are performed for 1�� /�F
�50 and 1�W /�F�5.5. In an InGaAs/AlGaAs quantum
well characterized by electron concentration ns=2.0

1012 cm−2 and effective mass m�=0.05m0 with free-
electron mass m0, we have EF=95.8 meV, �F=17.7 nm,
1.8�W�9.7 nm, mobility 7.6
103���3.8

105 cm2 /V s, and �=2.7
�
10−10 eV m.

III. NUMERICAL RESULTS

Figure 1 shows examples of calculated geometric average
of the conductance as a function of the length in wires with
width �a� W /�F=2.14, �b� 3.57, and �c� 5. The upward ar-
rows show localization length 
. The results for �=0 and �
=0.5 are qualitatively in good agreement with those obtained
previously in the full symplectic quantum wires.6,7 In narrow
wires with W /�F=2.14 shown in �a�, the conductance for �
=0, 0.02, and 0.05 is nearly indistinguishable for � /�F=1
and a slight difference appears with the increase in �. In this
case, the symmetry of the system remains orthogonal for
both �=0.02 and 0.05 while the localization effect is reduced
considerably due to full antilocalization effect in the sym-
plectic symmetry for �=0.5.

In wider wires with W /�F=3.57 shown in Fig. 1�b�, the
conductance for �=0.02 is nearly the same as that for �=0
and a slight deviation appears for �=0.05 in dirty case
� /�F=1. With the increase in the mean-free path, the con-
ductance for �=0.05 approaches that for �=0.5, suggesting
that the effective universality class has now changed from
orthogonal to symplectic. This behavior appears also for �
=0.02 in further wider wires with W /�F=5 shown in Fig.
1�c�. Therefore, the “effective universality class” of the sys-
tem depends on the mean-free path or the strength of disor-
der. In the following, this dependence will be shown to be
determined by the relative magnitude of spin-relaxation
length and the localization length.

Although not explicitly shown here, the resulting localiza-
tion length for �=0 and �=0.5 is qualitatively understood in
terms of the analytic but approximate expression of the lo-
calization length in a wire obtained by a Fokker-Planck
equation for transmission coefficients, given by4,5
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FIG. 1. �Color online� Calculated geometric average of the conductance as a function of length measured in units of mean-free path �
for � /�F=50, 5, and 1. �a� N=4, �b� 7, and �c� 10. The upward arrows show the localization length.

KANEKO, KOSHINO, AND ANDO PHYSICAL REVIEW B 81, 155310 �2010�

155310-2




 = � �N + 1�� �orthogonal� ,

�4N − 2�� �symplectic� ,
	 �4�

where N is the channel number. The values of localization
lengths for �=0 and 0.5 are close to the orthogonal and sym-
plectic values in Eq. �4�, respectively, while the analytic ex-
pression seems to slightly overestimate. The localization
length hardly changes when � is increased beyond 0.5, show-
ing that the fully symplectic case is realized for �=0.5.

Figure 2 shows calculated localization length together
with spin-relaxation length as a function of the wire width
for �=0.02 and 0.05 and for � /�F=1, 5, and 50. The local-
ization length is indicated by the open symbols and the spin-
relaxation length is indicated by solid symbols. The dotted
lines and solid lines show the localization length given by
Eq. �4� in the orthogonal case and the symplectic case, re-
spectively.

The localization length increases with the width while the
spin-relaxation length decreases. As a result, their relative
order changes at certain values of W depending on the mean-
free path and �. Once �S becomes smaller than 
, the local-
ization length starts to become larger than that of the or-
thogonal case and approaches that of the symplectic case, as
is particularly clear in the case �=0.05 shown in �d�–�f�. For
�=0.02, �S becomes much larger and the crossover starts to
occur in wider or cleaner wires as in �c� with � /�F=50.
These results clearly show that the symmetry crossover oc-
curs depending on the relative magnitude of the localization

length and the spin-relaxation length rather than the strength
of spin splitting.

In order to explicitly show the crossover as a function of
the mean-free path, we calculate the localization length and
the spin-relaxation length averaged over the wires belonging
to the same channel number. The results are shown in Fig. 3.
In this figure, the open symbols and the solid lines denote the
localization length and the filled symbols and the dashed
lines denote the spin-relaxation length, respectively. With in-
crease in the width, the spin-relaxation length decreases,
while the localization length increases, resulting in the
change in the relative magnitude of �S and 
.

For N=4 shown in Fig. 3�a�, the localization length in-
creases without any features in proportion to the mean-free
path. Further, it is independent of � for �=0–0.05 because of
the “effective” orthogonal universality class and the symme-
try is symplectic only for �=0.5. For N=7 shown in Fig.
3�b�, the localization length for �=0.05 exceeds the spin-
relaxation length at a particular point lying in the region 3
�� /�F�4. When the mean-free path approaches this cross-
ing point from below, the localization length starts to deviate
from that for �=0 �orthogonal� and increases toward that for
�=0.5 �symplectic�. The similar behavior can also be ob-
served for �=0.03. For N=10 shown in Fig. 3�c�, this behav-
ior is apparent for all of �=0.05, 0.03, and 0.02. We can
safely conclude, again, that the quantum wire with the spin-
orbit interaction remains effectively as orthogonal when �S
�
 and crossovers to symplectic when �S�
.

Figure 4 shows examples of calculated conductance fluc-
tuation as a function of the length for various values of
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FIG. 2. �Color online� Calculated localization length 
 and spin-relaxation length �S as a function of wire width W. �a� � /�F=1, �b� 5,
and �c� 50 for �=0.02. �d� � /�F=1, �e� 5, and �f� 50 for �=0.05. The dotted lines and solid lines show Eq. �4� in the orthogonal and
symplectic case, respectively. The localization length increases with W while the spin-relaxation length decreases. As a result, their relative
order changes at a certain value of W depending on mean-free path � and �. When �S becomes smaller than 
, the localization length starts
to become larger than that of the orthogonal case and approaches that of the symplectic case.

SYMMETRY CROSSOVER IN QUANTUM WIRES WITH… PHYSICAL REVIEW B 81, 155310 �2010�

155310-3



� /�F. The localization lengths are indicated by vertical ar-
rows and the horizontal dashed lines represent the results
obtained by perturbation calculations,31

�G =
e2

h

 �0.730 �orthogonal� ,

0.365 �symplectic� .
	 �5�

We first note that the results for �=0 �orthogonal� and 0.5
�symplectic� are essentially the same as those obtained
previously.7

In narrow wires with channel number N=4 shown in Fig.
4�a�, the results of ��0.05 are all nearly the same and quite
different from that of �=0.5, showing that the system sym-
metry is essentially orthogonal for ��0.05. This is consis-
tent with the fact that the localization length denoted by up-
ward arrows remains the same for ��0.05 and that the spin-
relaxation length is larger than the localization length
independent of � shown in Fig. 3�a�.

In wider wires with channel number N=7 shown in Fig.
4�b�, the curves for �=0.05 become closer to those for �
=0.5 with the increase in �, suggesting that the symmetry
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FIG. 3. �Color online� The averaged spin-relaxation length and localization length as a function of the mean-free path for channel number
�a� N=4, �b� 7, and �c� 10. When 
��S, the localization length starts to increase faster with � due to the symmetry crossover from
orthogonal to symplectic class.
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crossover is taking place there. This is again consistent with
the behavior of the localization length, which shifts from the
value of �=0 to that of �=0.5 in a similar manner. In even
wider wires with N=10 in Fig. 4�c�, the symmetry crossover
for �=0.05 occurs in the region of smaller �, and the sym-
metry change starts to appear even for �=0.02 with the in-
crease in �. This behavior of the conductance fluctuation
again shows that the spin-relaxation length is the relevant
length changing the effective symmetry class from orthogo-
nal to symplectic.

The role of the spin-relaxation length in the symmetry
crossover can be understood as follows: In the quantum wire,
electron wave function can extend only within a finite region
determined by the localization length. If the spin-relaxation
length is much larger than the localization length, an electron
does not forget the initial spin direction before the wave
function completely decays. In such a case, effects of the
spin-orbit interaction cannot have any influence on the states
and therefore the system remains in the effective orthogonal
class. When the localization length exceeds the spin-
relaxation length, however, the spin memory is destroyed
within the extent of the localized wave function and the sym-
metry crossover fully develops from orthogonal to
symplectic.

IV. SUMMARY

In this paper, we calculated the localization length and the
conductance fluctuation in quantum wires with spin-orbit in-
teraction, and showed that the effective universality class is
determined by the relative magnitude of the spin-relaxation
length and the localization length, irrespective of individual
parameters such as wire width, strength of spin-orbit interac-
tion, or mean-free path. When the spin-relaxation length is
longer than the localization length, the universality class of
this system is orthogonal. When the spin-relaxation length
becomes comparable to or smaller than the localization
length, the symmetry crossovers to symplectic class.
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